x^2-17=24

Simple and best practice solution for x^2-17=24 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2-17=24 equation:



x^2-17=24
We move all terms to the left:
x^2-17-(24)=0
We add all the numbers together, and all the variables
x^2-41=0
a = 1; b = 0; c = -41;
Δ = b2-4ac
Δ = 02-4·1·(-41)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{41}}{2*1}=\frac{0-2\sqrt{41}}{2} =-\frac{2\sqrt{41}}{2} =-\sqrt{41} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{41}}{2*1}=\frac{0+2\sqrt{41}}{2} =\frac{2\sqrt{41}}{2} =\sqrt{41} $

See similar equations:

| 8y^2+5y+6=0 | | 13x+13=4x+283 | | 1=-9t^2 | | 3(x+4)=-5x+-36 | | 8=-w^2-6w | | x^2-1/3=5 | | -10x–5+2(-5+6x)=11 | | 7/6=x63 | | -2=-6q^2 | | x+(x+5/8)=(x+5/16) | | 7z^2-2=0 | | x4+12=-8 | | x+x/8+5/8=x/16+5/16 | | 4y-20=3y+16 | | 6x=-2x+22 | | 3u^2+30u+75=0 | | 7s^2-3s-7=0 | | -16t^2+96t+17=0 | | -112=4(-3r-7 | | 5x=1/3(-6x-9) | | a+3=2a+2a= | | 4v^2+6v=0 | | 2v^2+8v+5=0 | | 2/3=-2/3x+3/4 | | -7+2=-6x-71 | | 3w^2-2w+1=0 | | C^2-3x-12=0 | | 9u^2-9u-2=0 | | 4(x+2)+5x-7=180 | | 3x+10=4-x | | 20x-5=2x+7 | | 3r^2+5r+6=0 |

Equations solver categories